Crack Growth with Non-interpenetration: a Simplified Proof for the Pure Neumann Problem

نویسندگان

  • Gianni Dal Maso
  • Giuliano Lazzaroni
چکیده

We present a recent existence result concerning the quasistatic evolution of cracks in hyperelastic brittle materials, in the framework of finite elasticity with non-interpenetration. In particular, here we consider the problem where no Dirichlet conditions are imposed, the boundary is traction-free, and the body is subject only to time-dependent volume forces. This allows us to present the main ideas of the proof in a simpler way, avoiding some of the technicalities needed in the general case, studied in [9].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasistatic Crack Growth in Finite Elasticity with Non–interpenetration

We present a variational model to study the quasistatic growth of brittle cracks in hyperelastic materials, in the framework of finite elasticity, taking into account the non-interpenetration condition.

متن کامل

Saint-Venant torsion of non-homogeneous anisotropic bars

The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order partial differential equation with variable coefficients, subjected to a generalized Neumann type boundary condition. The problem is solved using the Analog Equation Method (AEM)...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

CHARACTERIZATION OF TRANSVERSE CRACK AND CRACK GROWTH IN A RAILWAY RAIL

Abstract: To ensure the rail transportations safety, evaluation of fatigue behavior of the rail steel is necessary. High cycle fatigue behaviour of a rail steel was the subject of investigation in this research using fracture mechanics. Finite element method (FEM) was used for analyzing the distribution of the stresses on the rail, exerted by the external load. FEM analysis showed that the ...

متن کامل

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009